
Implementation of Generational Garbage
Collector in SOM++ VM

Sebastian Klose and Manuel Blechschmidt

Hasso-Plattner-Institut, 14482 Potsdam, Germany
Sebastian.Klose@student.hpi.uni-potsdam.de,

Manuel.Blechschmidt@student.hpi.uni-potsdam.de

Abstract. This paper describes the contribution of Sebastian Klose and
Manuel Blechschmidt for the SOM++ VM in the lecture Virtual Ma-
chines in 2009 on the Hasso-Plattner-Institut.
They tried to implement a generational garbage collector which is able
to manage two heaps to speed up garbage collection based on the em-
pirical proven thesis: ”most objects die young”[1] but the didn’t suc-
ceed. Garbage collection is a part of most modern process virtual ma-
chine implementation to free the developer from the task of memory
management[2]. The efficient and effective implementation is critical for
performance and memory consumption of the system.

1 Introduction

Every computer program needs a certain amount of memory to obtain it’s as-
signed goal. In the beginning of computation this memory was directly accessed
by its register name or address. There were problems with growing and shrinking
memory and fragmentation. Then with newer programming languages and mod-
ern operating system some of these problems where solved with virtual memory
systems [3].

Although the virtual memory systems made it easy to efficiently allocate
memory the problem of freeing the memory again kept unsolved and the task of
cleaning up the memory was given to the developer. Even if it sounds simple,
freeing memory can be quite complicated. A lot of methods were introduced to
help the programmer doing this job for example [4,5].

To solve this problem automatic memory allocation and deallocation strate-
gies were developed. These methods are called ”Garbage Collectors”. In this
paper we will describe the implementation of a new garbage collector for the
SOM++ VM.

Section 1 gave a brief overview about the history and the problems which
arise during memory management. Section 2 will give an overview of the basic
concepts and requirements for a garbage collector. The next part 3 will explain
how a generational garbage collector have been implemented for SOM++. Af-
terwards in section 4 we will discuss the performance gains. In Related Work 5
other ways of garbage collections are mentioned. 6 will introduce some task which
could speed up memory management more. We will end with the Conclusion in
section 7.

2

2 Garbage Collectors

A garbage collector is a part of a computer programing most of the time of a
virtual machine running from time to time which tries to find unused memory
regions and returns them to the superior system. The most Garbage Collectors
are running when the memory is full. They will stop the system and then search
for unused objects. Garbage Collector which stop all other executions when
freeing memory are called stop-the-world Collectors.

The platform which we are referring to in this paper is a virtual machine im-
plementation for Smalltalk called SOM++ so most of the memory is consumed
by objects which are represented in memory. The other memory is consumed for
example by the object table or the interpreter itself. These parts will manage
the memory for their own. The garbage collector will work on the object repre-
sentations created by the small talk code in the memory. This memory is called
heap. When an object won’t be used anymore the memory which it consumed
can be reclaimed. The challenge for the implementation is to figure out with
few resources as possible if this is the case. The implementation that we are
describing will use an generational approach.

Most of the collectors start to run when the heap is full. This makes the run
of a garbage collector unpredictable and most of the systems which have garbage
collectors loose the ability for real time applications [6].

3 Implementation of Generational Garbage Collector in
SOM++

The next paragraphs will described the SOM++ virtual machine and especially
the memory manage part followed by a description of the new collector.

3.1 SOM++

SOM++ is a virtual machine for smalltalk which is completely written in C++.
The smalltalk meta model is implemented as an own set of classes written in
the smalltalk dialect supported by the platform. The system was developed at
the HPI with the goal to have an experimental VM for research and teaching
purposes. SOM++ is platform independent and can run on Windows, Linux or
Mac OS X environments. It contains a complete virtual machine environments
with the following features:

– Stackbased virtual machine
– Bytecode compiler
– Bytecode interpreter
– Own implementation of smalltalk meta model
– Automatic memory management (Mark-And-Sweep Garbage Collection)
– Testsuite
– Benchmarksuite

3

– Examples
– more stable and experimental features

It was primarily written by Arne Bergmann, Tobias Pape and Michael Haupt
and is now extended by a groups of students for studying virtual machines.

3.2 Traditional Mark-And-sweep GC

The first implementation of SOM++ has a traditional and naive mark-and-
sweep garbage collector[7]. It has one heap and all objects are allocated on that
heap. The heap and the garbage collector are located in the Heap.cpp and the
GarbageCollector.cpp files in the memory folder.

When the vm starts up some objects are defined as the so called gc roots.
These gc roots objects will never be removed from the heap and are used as
the starting point for garbage collection. Typically these objects are global and
important objects. In figure 1 you can see the system object and the Frame class
which are 2 of the many roots.

Most of the roots are set in the Universe.cpp class. Some examples of roots
can be found in the initialization method Universe :: initialize().

A mark-and-sweep garbage collector works in 2 phases in the first phase all
reachable objects from the gc roots are marked and then in the second step all
objects which are not marked are deleted from memory.

The mark phases uses a recursive approach to go through the heap the
sweep phase uses a linear algorithm. The algorithm itself is implemented in the
GarbageCollector.cpp class. There are 3 functions which work in conjunction to
freeing memory.

Root 1: system

object_1object_3

object_4object_5

Root 2: Frame

object_2

object_6 object_7

Root 3: ...

object_8 object_9

Fig. 1. Subset of objects reachable from gc root nodes.

4

GarbageCollector :: Collect() this function is called to start the garbage
collection run. After setting some initial variables it calls GarbageCollector ::
markReachableObject(). This procedure cares that all objects which are still
reachable will be marked. This works by first taking all entries from the globals
array and then calling MarkReferences() for the first and for the second entry.
Recursively all gcFields of reachable objects will be marked by assigning a 1 to
the gc field. Afterwards the MarkReferences() function on the current frame
will be called which will recursively mark all stack frames and all referenced
objects.

The next thing what the Collect() function does is going through the heap
freeing all the unused objects and saving informations about the space in a
double linked list called freeList of VMFreeObjects.

In the last step of the classical collector the free cells in the heap which are
saved in the freeList are merged. This works by going sequentially through the
free objects and check if the current entry of the freeList plus it’s object size
points directly to the beginning of the entry afterwards. If this is the case, the
following entry will be removed and the current will be extended by the removed
size and associated with the second one.

The pseudo code in 1 illustrated a normal implementation.

Algorithm 1 Simple mark and sweep implementation for a garbage collector
function startGarbageCollection(){
roots← getAllRoots()
for root in roots do

mark(root)
end for
sweep()
}
function mark(node o){
if NOT o.marked then

o.marked = true
for referencedByO in o.objects do

mark(referencedByO)
end for

end if
}
function sweep(){
for o in allObjectsInHeap do

if o.marked then
o.marked = false

else
delete o

end if
end for
}

5

The implementation have to care for atomic allocations and when the memory
becomes short the garbage collector has to run reliable and make create enough
space for the allocation.

For atomic commits StartUninterruptableAllocation() and EndUninterruptableAllocation()
are provided by the heap to tell him that he shouldn’t start a collector run until
the section is done. When StartUninterruptableAllocation() is called on the
next object allocation the heap checks if at least 10% of the heap are still free.
If no a collection run starts.

Besides errors in the implementation the mark-and-sweep approach has many
other disadvantages. The memory becomes fragmented and it is hard to find
new parts with at least specific size. The reference counting group found that
the SOM++ VM is especially slow when it has to find free cells in the heap [8].
The one that we want to reduce and optimize in this paper is the allocation of
new space by splitting the heap in two parts were the first part will be used a
lot more often then the second one.

3.3 Generational GC

A generational gc[9] manages two heaps one nursery heap which is fixed in size
and one mature heap which can grow if it exceeds it boundaries. All new space for
objects will first be allocated in the nursery heap. When the nursery heap is full a
garbage collector run is started. The garbage collector will use a mark-and-sweep
technique to figure out which objects aren’t used anymore. The mark-and-sweep
can run in two modes. One mode only traverses the nursery heap and the other
mode makes a full mark-and-sweep run and uses both heaps.

It expects that most of the objects in the nursery heap will only live a short
time so most of the object won’t get a mark. All the object which get a mark or
are referenced by objects in the mature heap will be moved in the mature heap.
When the mature heap becomes full during this action a full garbage collector
run in started and afterwards a compacting algorithm will go through the mature
heap and care that fragmentation won’t happen. Then the remaining objects can
be moved.

The garbage collector will work according to the following algorithm:

– Go through nursery heap and mark all objects which are used with a 1
– Move all objects which have a mark or are references by mature objects to

the mature heap (update references in object table)
– If the mature heap is full do a complete collector run

• Mark-and-sweep over both heaps
• Sweep and compact on mature heap
• Copy left objects from nursery heap to mature (update references in

object table)
– Clean nursery heap

It is a challenge to set a good size for the nursery and the mature heap. It is
a good idea to set the nursery heap to a size which fits in the Level-2 cache of
modern processors.

6

Because of the moving character of the GC it is necessary to change the
pointers after a moving operation. For implementing this behavior there are
different methods. In our implementation we are using an object table which
was implemented by another group [8].

During the implementation of the generational GC a lot of bugs in conjunc-
tion with atomic allocations of multiple objects. We would guess that we found
about 5 places where that happened. Further the object table could become in-
consistent if the garbage collector run at the wrong time. Errors like this make the
implementation of a garbage collector quite complex because the implementor
of the garbage collector has to trust that the other vm developers are allocating
their objects in the correct order and enclose them with uninterruptible calls.

If this is not the case debugging can be quite complicated because the vm
will crash when one of the unnecessary cleaned objects is accessed. Unfortunately
this access and the freeing are not connected and it is pretty hard to find and
fix the missing reference. This is also the main reason why the outcomes of the
implementation are unsatisfying.

Object Table 2 shows how an object table maps the variables which appears
in the smalltalk code to the data which is located on the heap.

Object1

Object2

Object3

Object4

Smalltalk Code Object Table Heap

Fig. 2. Illustration of pointer into object table and from object table into heap.

The implementation of the object table is a singleton and provides an inter-
face where an object can be added (ObjectTable :: AddObject(obj)) and removed
(ObjectTable :: RemoveObject(index)). Further a method was added to update
a reference pointing to an object (ObjectTable :: updateObjectReference(index, newObj)).
The internal data structure which holds the entries of the table is a vector from
the c++ standard library. The memory for the object table is separated from
the heap and grows for itself.

All the time when a new VMObject is constructed it will also create an
instance of a VMPointer. This VMPointer is the connection from the object to
the object table. It holds the index of the object in the object table. The pointer
will be saved in the self pointer variable of VMObject.

When during a garbage collector run an object is removed from the object
table. The object will be replaced with an int which holds the last free position

7

in the object table. These free entries do point to each other. This is illustrated
in figure 3

1

2

3

4

5

6

VMString

VMFrame

VMBigInteger

0

2

5

free_stack = 6

Fig. 3. Free spaces in the objecttable are filled with ints pointing to the next
free space.

We don’t know if a self growing vector is the fastest implementation. Memory
allocation could slowdown the vm until the object table has reached it’s biggest
size but we guess that this doesn’t matter. If we could guess how many objects
fit in the heap we could set the object table size according to this information.
In some tests we figured out that most of the objects are between 20 and 50
bytes in size. There are only a few ones which are a lot bigger. We could divide
the heap size by 40 to get a good starting size for the object table. When the
heap is 1 mb, 26.214 is a good starting size for the object table.

During the implementation it could happen that the garbage collector runs
when an object was not yet added to the object table. This caused the garbage
collector to free the first entry of the table which holds an null pointer. The next
time the null pointer is accessed the system will crash.

Heap The Heap was divided into two Heaps. The nursery heap and the mature
heap. According to the names the smaller one was implemented in the Nursery-
Heap.cpp file and the bigger one in the MatureHeap.cpp file.

The interface used before which was defined in the Heap.h file stayed intact
and was reused in the implementation. Therefore it shouldn’t be necessary to
make any further changes on source code besides the memory folder. The default
Heap Size for the nursery heap was set to 1mb and the mature heap to 100mb.

Moving Garbage Collectors can be divided into two classes Moving and Non-
Moving. A moving gc will copy the objects which are on the heap during the
garbage collector run. Exactly this is the case when the generational collector
moves objects from nursery to mature and when compacting the mature heap.

8

The moving is implemented in the GarbageCollector :: Collect() and in the
Compaction in GarbageCollector :: compact().

When moving an object the memory is copied to the new location and after-
wards the pointer is updated.

Compacting Like we already described we are using an compaction algorithm
to always keep a perfect aligned mature heap. In our case perfect aligned means
that all objects which are alive means reachable by the gc roots are on the
beginning of the heap and afterwards everything is free.

After a full marking run is completed the compaction algorithm should start.
This is happening in GarbageCollector :: compact()

The compaction for the mature heap goes sequentially from the beginning of
the heap through the objects and moves all alive objects as close as possible to
the previous alive object. This can be seen in illustration [?].

Fig. 4. Illustration of compaction run.

References from Mature to Nursery Heap One thing which was sometimes
mentioned but never explained is the problem when a mature object references
an object in the nursery heap because we get the moving generational garbage
collector never to run we decided that we will implement a non moving garbage
collector with this feature from the trunk. The problem itself is shown in figure 5.
Our solution is based on the remembered sets approach shown in [13]. Basically
all the time when a new reference assignment is done. We check if this assignment
goes from an old to a new object. If this is the case. We save that there is that
assignment. Later we can use these counted references in the garbage collector
run to save nursery objects which are still used.

9

Fig. 5. Mature objects having references in nursery heap.

4 Benchmarks

Unfortunately it was not possible to implement all the ideas given in this paper
in the SOM++ VM. After implementing a moving gc which uses the object
table and maintained two heaps which always crashed. Even after about 20
hours of debugging and finding some problems in conjunction where the garbage
collector ran. So sometimes wrong entries of the object table were deleted because
the object didn’t received their index yet other times objects which weren’t
referenced yet were removed from the heap. Sometimes even pointers to wrong
objects appeared this was never fixed.

To have a running solution we implemented a non moving garbage collector
which has two lists one nursery list and one mature list. This kind of garbage
collector worked for some benchmarks but was about 10 times slower then before.

Fig. 6. Comparison between non-moving generational garbage collector and
mark-and-sweep in trunk.

10

5 Related Work

Another group in the lecture implemented a Reference Counting Garbage Col-
lector [8]. In comparison to a mark and sweep approach the Reference Counting
Garbage Collector can’t break automatically circular structures which are not
pre defined. The big advantage of a the counting gc is that it does not have
to stop the world when it is running. The group also implemented immediate
signed integers which made the benchmarks look pretty well. The performance
of the the collector itself compared to the trunk mark-and-sweep approach is a
little bit better. Especially at allocating new space when this is necessary a lot.

The current trend in computation to parallel processors, large memory and
real time applications poses new challenges to the garbage collectors even after
50 years it is still necessary to write new ones. The Java 6 VM brings the new
G1 (garbage first) [12] collector as an experimental new collector. It can run
in parallelism and mets soft real-time goals. Time will show how good the new
collector will perform in the real world.

6 Future Work

The most important thing is to make the moving garbage collector version work.
When this is done the remembering sets code can be merged to gain a real
performance benefit.

7 Conclusion

Implementing a mark-and-sweep garbage collector is difficult because memory
corruptions are hard to find and race conditions appear often. The whole code has
to be designed in a transactional manner where parts are allocated in conjunction
on the heap.

References

1. William D. Clinger, Lars T. Hansen: Generational Garbage Collection and
the Radioactive Decay Model ACM SIGPLAN Notices Volume 32, Issue 5 (May
1997) 97 – 108

2. John McCarthy.: Recursive functions of symbolic expressions and their
computation by machine, Part I Communications of the ACM Volume 3, Is-
sue 4 (April 1960) 184 – 195

3. Jack Belzer, Albert G. Holzman, and Allen Kent: Virtual memory systems En-
cyclopedia of computer science and technology, eds. (1981), 14, CRC Press, pp. 32

4. David R. Barach, David H. Taenzer, and Robert E. Wells: A technique for finding
storage allocation errors in C-language programs ACM SIGPLAN Notices
Volume 17 Issue (May 1982) 16 – 24

5. David L. Heine, Monica S. Lam : A practical flow-sensitive and context-
sensitive C and C++ memory leak detector ACM SIGPLAN Notices Volume
38 , Issue 5 (May 2003) 168 – 181

11

6. Donald E. Knuth: The Art of Computer Programming, volume I: Funda-
mental Algorithms, Chapter 2. Addison-Wesley, second edition, (1973)

7. Bruno R. Preiss: Data Structures and Algorithms with Object-Oriented
Design Patterns in Java Mark-and-Sweep Garbage Collection, John Wiley &
Sons, Inc (1998) 424 – 425

8. Martin Czuchra, Daniel Hefenbrock: Object Table and Reference Counting in
SOM++ Lecture Virtual Machines at Hasso-Plattner-Institut (2009)

9. Richard Jones, Rafael Lins: Garbage Collection – Algorithms for Automatic
Dynamic Memory Management John Wiley & Sons, Inc (1999)

10. Jacques Cohen, Alexandru Nicolau: Comparison of Compacting Algorithms
for Garbage Collection ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) Volume 5 , Issue 4 (October 1983) 532 – 553

11. David Ungar, Frank Jackson: An Adaptive Tenwing Policy for Genera-
tion Scavengers ACM Transactions on Programming Languages and Systems
(TOPLAS) Volume 14 , Issue 1 (January 1992) 1 – 27

12. David Detlefs, Christine Flood, Steve Heller, Tony Printezis – Sun Microsystems,
Inc. Garbage-First Garbage Collection ISMM04, October 2425, 2004, Vancou-
ver, British Columbia, Canada. ACM 1581139454/04/0010.

13. David Ungar: Generation Scavenging: A Non-Disruptive High Perfor-
mance Storage Reclamation Algorithm. ACM SIGPLAN Notices, Volume 19,
Issue 5 (1984) 157–167.

	Implementation of Generational Garbage Collector in SOM++ VM
	Sebastian Klose, Manuel Blechschmidt

